1
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

The numbers $$1,2,3, \ldots \ldots, \mathrm{m}$$ are arranged in random order. The number of ways this can be done, so that the numbers $$1,2, \ldots \ldots ., \mathrm{r}(\mathrm{r}<\mathrm{m})$$ appears as neighbours is

A
$$(m-r)$$ !
B
$$(\mathrm{m}-\mathrm{r}+1)$$ !
C
$$(\mathrm{m}-\mathrm{r})!\mathrm{r}$$ !
D
$$(\mathrm{m}-\mathrm{r}+1)!\mathrm{r}$$ !
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$$ and $$\theta=\frac{2 \pi}{7}$$, then $$A^{100}=A \times A \times \ldots .(100$$ times) is equal to

A
$$ \left(\begin{array}{cc} \cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta \end{array}\right) $$
B
$$ \left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right) $$
C
$$ \left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) $$
D
$$ \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) $$
3
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$\left(1+x+x^2+x^3\right)^5=\sum_\limits{k=0}^{15} a_k x^k$$ then $$\sum_\limits{k=0}^7(-1)^{\mathbf{k}} \cdot a_{2 k}$$ is equal to

A
25
B
45
C
0
D
44
4
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

The coefficient of $$a^{10} b^7 c^3$$ in the expansion of $$(b c+c a+a b)^{10}$$ is

A
140
B
150
C
120
D
160
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12