1
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$\left(1+x+x^2+x^3\right)^5=\sum_\limits{k=0}^{15} a_k x^k$$ then $$\sum_\limits{k=0}^7(-1)^{\mathbf{k}} \cdot a_{2 k}$$ is equal to

A
25
B
45
C
0
D
44
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

The coefficient of $$a^{10} b^7 c^3$$ in the expansion of $$(b c+c a+a b)^{10}$$ is

A
140
B
150
C
120
D
160
3
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

$$ \text { If }\left|\begin{array}{lll} x^k & x^{k+2} & x^{k+3} \\ y^k & y^{k+2} & y^{k+3} \\ z^k & z^{k+2} & z^{k+3} \end{array}\right|=(x-y)(y-z)(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \text {, then } $$

A
k = $$-$$3
B
k = 3
C
k = 1
D
k = $$-$$1
4
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] \cdot A \cdot\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$$, then $$A=$$

A
$$\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$$
B
$$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$$
C
$$\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$$
D
$$\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12