1
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a differentiable function and $$f(1)=4$$. Then the value of $$\lim _\limits{x \rightarrow 1} \int_\limits4^{f(x)} \frac{2 t}{x-1} d t$$, if $$f^{\prime}(1)=2$$ is

A
16
B
8
C
4
D
2
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

$$ \text { If } \int \frac{\log _e\left(x+\sqrt{1+x^2}\right)}{\sqrt{1+x^2}} \mathrm{~d} x=\mathrm{f}(\mathrm{g}(x))+\mathrm{c} \text { then } $$

A
$$\mathrm{f}(x)=\frac{x^2}{2}, \mathrm{~g}(x)=\log _{\mathrm{e}}\left(x+\sqrt{1+x^2}\right)$$
B
$$\mathrm{f}(x)=\log _{\mathrm{e}}\left(x+\sqrt{1+x^2}\right), \mathrm{g}(x)=\frac{x^2}{2}$$
C
$$\mathrm{f}(x)=x^2, \mathrm{~g}(x)=\log _{\mathrm{e}}\left(x+\sqrt{1+x^2}\right)$$
D
$$\mathrm{f}(x)=\log _{\mathrm{e}}\left(x-\sqrt{1+x^2}\right), \mathrm{g}(x)=x^2$$
3
WB JEE 2024
MCQ (Single Correct Answer)
+2
-0.5
Change Language

Let $$\mathrm{I}(\mathrm{R})=\int_\limits0^{\mathrm{R}} \mathrm{e}^{-\mathrm{R} \sin x} \mathrm{~d} x, \mathrm{R}>0$$. then,

A
$$I(R)>\frac{\pi}{2 R}\left(1-e^{-R}\right)$$
B
$$I(R)<\frac{\pi}{2 R}\left(1-e^{-R}\right)$$
C
$$I(R)=\frac{\pi}{2 R}\left(1-e^{-R}\right)$$
D
$$I(R) \text { and } \frac{\pi}{2 R}(1-e^{-R}) \text { are not comparable }$$
4
WB JEE 2024
MCQ (Single Correct Answer)
+2
-0.5
Change Language

Consider the function $$\mathrm{f}(x)=x(x-1)(x-2) \ldots(x-100)$$. Which one of the following is correct?

A
This function has 100 local maxima
B
This function has 50 local maxima
C
This function has 51 local maxima
D
Local minima do not exist for this function
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12