Let $$\Gamma$$ be the curve $$\mathrm{y}=\mathrm{be}^{-x / a}$$ & $$\mathrm{L}$$ be the straight line $$\frac{x}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}=1$$ where $$\mathrm{a}, \mathrm{b} \in \mathbb{R}$$. Then
If $$n$$ is a positive integer, the value of $$(2 n+1){ }^n C_0+(2 n-1){ }^n C_1+(2 n-3){ }^n C_2 +\ldots .+1 \cdot{ }^n C_n$$ is
If the quadratic equation $$a x^2+b x+c=0(a>0)$$ has two roots $$\alpha$$ and $$\beta$$ such that $$\alpha<-2$$ and $$\beta>2$$, then
If $$\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}} \in \mathbb{R}(\mathrm{i}=1,2,3)$$ and $$x \in \mathbb{R}$$ and $$\left|\begin{array}{lll}\mathrm{a}_1+b_1 x & a_1 x+b_1 & c_1 \\ \mathrm{a}_2+b_2 x & a_2 x+b_2 & c_2 \\ \mathrm{a}_3+b_3 x & a_3 x+b_3 & c_3\end{array}\right|=0$$, then