In $$\triangle \mathrm{ABC}$$, co-ordinates of $$\mathrm{A}$$ are $$(1,2)$$ and the equation of the medians through $$\mathrm{B}$$ and C are $$x+\mathrm{y}=5$$ and $$x=4$$ respectively. Then the midpoint of $$\mathrm{BC}$$ is
A line of fixed length $$\mathrm{a}+\mathrm{b} . \mathrm{a} \neq \mathrm{b}$$ moves so that its ends are always on two fixed perpendicular straight lines. The locus of a point which divides the line into two parts of length a and b is
With origin as a focus and $$x=4$$ as corresponding directrix, a family of ellipse are drawn. Then the locus of an end of minor axis is
Chords $$\mathrm{AB}$$ & $$\mathrm{CD}$$ of a circle intersect at right angle at the point $$\mathrm{P}$$. If the length of AP, PB, CP, PD are 2, 6, 3, 4 units respectively, then the radius of the circle is