If $$\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}} \in \mathbb{R}(\mathrm{i}=1,2,3)$$ and $$x \in \mathbb{R}$$ and $$\left|\begin{array}{lll}\mathrm{a}_1+b_1 x & a_1 x+b_1 & c_1 \\ \mathrm{a}_2+b_2 x & a_2 x+b_2 & c_2 \\ \mathrm{a}_3+b_3 x & a_3 x+b_3 & c_3\end{array}\right|=0$$, then
The function $$\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$$ defined by $$\mathrm{f}(x)=\mathrm{e}^x+\mathrm{e}^{-x}$$ is :
A square with each side equal to '$$a$$' above the $$x$$-axis and has one vertex at the origin. One of the sides passing through the origin makes an angle $$\alpha$$ $$\left(0<\alpha< \frac{\pi}{4}\right)$$ with the positive direction of the axis. Equation of the diagonals of the square
If $$\mathrm{ABC}$$ is an isosceles triangle and the coordinates of the base points are $$B(1,3)$$ and $$C(-2,7)$$. The coordinates of $$A$$ can be