1
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

The equation $$\mathrm{r} \cos \theta=2 \mathrm{a} \sin ^2 \theta$$ represents the curve

A
$$x^3=y^2(2 \mathrm{a}+x)$$
B
$$x^2=y^2(2 \mathrm{a}+x)$$
C
$$x^3=y^2(2 \mathrm{a}-x)$$
D
$$x^3=\mathrm{y}^2(\mathrm{a}+x)$$
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$(1,5)$$ be the midpoint of the segment of a line between the line $$5 x-y-4=0$$ and $$3 x+4 y-4=0$$, then the equation of the line will be

A
$$83 x+35 y-92=0$$
B
$$83 x-35 y+92=0$$
C
$$83 x-35 y-92=0$$
D
$$83 x+35 y+92=0$$
3
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

In $$\triangle \mathrm{ABC}$$, co-ordinates of $$\mathrm{A}$$ are $$(1,2)$$ and the equation of the medians through $$\mathrm{B}$$ and C are $$x+\mathrm{y}=5$$ and $$x=4$$ respectively. Then the midpoint of $$\mathrm{BC}$$ is

A
$$\left(5, \frac{1}{2}\right)$$
B
$$\left(\frac{11}{2}, 1\right)$$
C
$$\left(11, \frac{1}{2}\right)$$
D
$$\left(\frac{11}{2}, \frac{1}{2}\right)$$
4
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

A line of fixed length $$\mathrm{a}+\mathrm{b} . \mathrm{a} \neq \mathrm{b}$$ moves so that its ends are always on two fixed perpendicular straight lines. The locus of a point which divides the line into two parts of length a and b is

A
a parabola
B
a circle
C
an ellipse
D
a hyperbola
EXAM MAP