1
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

$$ \text { If } \int \frac{\log _e\left(x+\sqrt{1+x^2}\right)}{\sqrt{1+x^2}} \mathrm{~d} x=\mathrm{f}(\mathrm{g}(x))+\mathrm{c} \text { then } $$

A
$$\mathrm{f}(x)=\frac{x^2}{2}, \mathrm{~g}(x)=\log _{\mathrm{e}}\left(x+\sqrt{1+x^2}\right)$$
B
$$\mathrm{f}(x)=\log _{\mathrm{e}}\left(x+\sqrt{1+x^2}\right), \mathrm{g}(x)=\frac{x^2}{2}$$
C
$$\mathrm{f}(x)=x^2, \mathrm{~g}(x)=\log _{\mathrm{e}}\left(x+\sqrt{1+x^2}\right)$$
D
$$\mathrm{f}(x)=\log _{\mathrm{e}}\left(x-\sqrt{1+x^2}\right), \mathrm{g}(x)=x^2$$
2
WB JEE 2024
MCQ (Single Correct Answer)
+2
-0.5
Change Language

Let $$\mathrm{I}(\mathrm{R})=\int_\limits0^{\mathrm{R}} \mathrm{e}^{-\mathrm{R} \sin x} \mathrm{~d} x, \mathrm{R}>0$$. then,

A
$$I(R)>\frac{\pi}{2 R}\left(1-e^{-R}\right)$$
B
$$I(R)<\frac{\pi}{2 R}\left(1-e^{-R}\right)$$
C
$$I(R)=\frac{\pi}{2 R}\left(1-e^{-R}\right)$$
D
$$I(R) \text { and } \frac{\pi}{2 R}(1-e^{-R}) \text { are not comparable }$$
3
WB JEE 2024
MCQ (Single Correct Answer)
+2
-0.5
Change Language

Consider the function $$\mathrm{f}(x)=x(x-1)(x-2) \ldots(x-100)$$. Which one of the following is correct?

A
This function has 100 local maxima
B
This function has 50 local maxima
C
This function has 51 local maxima
D
Local minima do not exist for this function
4
WB JEE 2024
MCQ (Single Correct Answer)
+2
-0.5
Change Language

In a plane $$\vec{a}$$ and $$\vec{b}$$ are the position vectors of two points A and B respectively. A point $P$ with position vector $$\overrightarrow{\mathrm{r}}$$ moves on that plane in such a way that $$|\overrightarrow{\vec{r}}-\vec{a}| \sim|\vec{r}-\vec{b}|=c$$ (real constant). The locus of P is a conic section whose eccentricity is

A
$$\frac{|\vec{a}-\vec{b}|}{c}$$
B
$$\frac{|\vec{a}+\vec{b}|}{c}$$
C
$$\frac{|\vec{a}-\vec{b}|}{2 c}$$
D
$$\frac{|\vec{a}+\vec{b}|}{2 c}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12