1
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If slope of the tangent to the curve $$x y+a x+b y=0$$ at the point $$(1,1)$$ on it is 2, then the value of $$3 a+b$$ is

A
3
B
1
C
2
D
$$-$$1
2
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$(3 x+2)-(5 y-3) i$$ and $$(6 x+3)+(2 y-4) i$$ are conjugates of each other, then the value of $$\frac{x-y}{x+y}$$ is (where $$\left.i=\sqrt{-1}, x, y \in R\right)$$

A
$$-$$1
B
0
C
1
D
2
3
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\left(\tan ^{-1} x\right)^2+\left(\cot ^{-1} x\right)^2=\frac{5 \pi^2}{8}$$, then the value of $$x$$ is

A
$$-$$2
B
$$-$$1
C
1
D
2
4
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of $$(1+x y) y d x+(1-x y) x d y=0$$ is

A
$$\log \left(\frac{x}{y}\right)+\frac{1}{x y}=k$$, where $$k$$ is constant of integration
B
$$\log \left(\frac{x}{y}\right)=\frac{1}{x y}+k$$, where $$k$$ is constant of integration
C
$$\log \left(\frac{x}{y}\right)+{x y}=k$$, where $$k$$ is constant of integration
D
$$\log \left(\frac{x}{y}\right)={x y}+k$$, where $$k$$ is constant of integration
MHT CET Papers
EXAM MAP