$$\mathbf{a}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{c}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$$ are three vectors. For a vector $$\mathbf{r}$$ with $$\mathbf{r} \times \mathbf{a}=\mathbf{b}$$ and $$\mathbf{r} \cdot \mathbf{c}=3,|\mathbf{r}|$$ is
Let $$P Q R$$ be a right angled isosceles triangle, right angled at $$Q(2,1)$$. If the equation of the line $$P R$$ is $$2 x+y=3$$, then the combined equation representing the pair of lines $$P Q$$ and $$Q R$$ is
If a curve $$y=a \sqrt{x}+b x$$ passes through the point $$(1,2)$$ and the area bounded by the curve, line $$x=4$$ and $$X$$-axis is 8 sq units, then
A plane is parallel to two lines whose direction ratios are $$2,0,-2$$ and $$-2,2,0$$ and it contains the point $$(2,2,2)$$. If it cuts coordinate axes at $$A, B, C$$, then the volume of the tetrahedron $$O A B C$$ (in cubic units) is