1
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(x)$$ is continuous on its domain $$[-2,2]$$, where

$$f(x)=\left\{\begin{array}{cc} \frac{\sin a x}{x}+3 & , \text { for }-2 \leq x<0 \\ 2 x+7 & , \text { for } 0 \leq x \leq 1 \\ \sqrt{x^2+8}-b & , \text { for } 1< x \leq 2 \end{array}\right.$$ $$\text { then the value of } 2 a+3 b \text { is }$$

A
$$-$$12
B
$$-$$10
C
10
D
12
2
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$P S$$ is the median of the triangle with vertices at $$P(2,2), Q(6,-1)$$ and $$R(7,3)$$, then the intercepts on the coordinate axes of the line passing through point $$(1,-1)$$ and parallel to PS are respectively

A
$$\frac{7}{2}, \frac{-7}{9}$$
B
$$\frac{2}{7}, \frac{9}{7}$$
C
$$\frac{-7}{2}, \frac{-7}{9}$$
D
$$-2,-9$$
3
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If Rolle's theorem holds for the function $$f(x)=x^3+b x^2+a x+5$$ on $$[1,3]$$ with $$c=2+\frac{1}{\sqrt{3}}$$, then the values of $$a$$ and $$b$$ respectively are

A
$$-11,-6$$
B
$$11,6$$
C
$$11,-6$$
D
$$6,11$$
4
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the point $$(1,6,2)$$ from the point of intersection of the line $$\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$$ and the plane $$x-y+z=16$$ is

A
11 units
B
12 units
C
13 units
D
14 units
MHT CET Papers
EXAM MAP