1
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of $$(1+x y) y d x+(1-x y) x d y=0$$ is

A
$$\log \left(\frac{x}{y}\right)+\frac{1}{x y}=k$$, where $$k$$ is constant of integration
B
$$\log \left(\frac{x}{y}\right)=\frac{1}{x y}+k$$, where $$k$$ is constant of integration
C
$$\log \left(\frac{x}{y}\right)+{x y}=k$$, where $$k$$ is constant of integration
D
$$\log \left(\frac{x}{y}\right)={x y}+k$$, where $$k$$ is constant of integration
2
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The integral $$\int_\limits{\pi / 6}^{\pi / 3} \sec ^{\frac{2}{3}} x \operatorname{cosec}^{\frac{4}{3}} x d x$$ is equal to

A
$$3^{\frac{5}{6}}-3^{\frac{2}{3}}$$
B
$$3^{\frac{7}{6}}-3^{\frac{5}{6}}$$
C
$$3^{\frac{5}{3}}-3^{\frac{1}{3}}$$
D
$$3^{\frac{4}{3}}-3^{\frac{1}{3}}$$
3
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow 0} \frac{\sqrt{1+x \sin x}-\sqrt{\cos x}}{\tan ^2 \frac{x}{2}}=$$

A
1
B
2
C
3
D
$$-$$1
4
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$A(1,-3), B(4,3)$$ are two points on the curve $$y=x-\frac{4}{x}$$. The points on the curve, the tangents at which are parallel to the chord $$A B$$, are

A
$$(1,2),(-1,-2)$$
B
$$(2,0),(-2,0)$$
C
$$(0,2),(1,-2)$$
D
$$(3,2),(-3,1)$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12