If $$x=a(\theta+\sin \theta)$$ and $$y=a(1-\cos \theta)$$ then $$\left(\frac{d^2 y}{d x^2}\right)_{at~ \theta=\pi / 2}=$$
If $$\sin (y+z-x), \sin (z+x-y)$$ and $$\sin (x+y-z)$$ are in AP, then
The negation of inverse of $$\sim \mathrm{p} \rightarrow \mathrm{q}$$ is
Let $$\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$$ and $$\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$$. If $$\overline{\mathrm{c}}$$ is a vector such that $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$$ and the angle between $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ and $$\overline{\mathrm{c}}$$ is $$60^{\circ}$$. Then $$|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=$$