The particular solution of the differential equation $$y(1+\log x) \frac{d x}{d y}-x \log x=0$$ when $$x=e, y=e^2$$ is
If $$\mathrm{G}(\overline{\mathrm{g}}), \mathrm{H}(\overline{\mathrm{h}})$$ and $$\mathrm{P}(\overline{\mathrm{p}})$$ are respectively centroid, orthocenter and circumcentre of a triangle and $$\mathrm{x} \overline{\mathrm{p}}+\mathrm{y} \overline{\mathrm{h}}+z \overline{\mathrm{g}}=\overline{0}$$, then $$\mathrm{x}, \mathrm{y}, \mathrm{z}$$ are respectively.
The co-ordinates of the foot of the perpendicular drawn from the point $$2 \hat{i}-\hat{j}+5 \hat{k}$$ to the line $$\vec{r}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+\lambda(10 \hat{i}-4 \hat{j}-11 \hat{k})$$ are
Which of the following matrices are invertible?
$$\begin{aligned} & \mathrm{A}=\left[\begin{array}{cc} 2 & 3 \\ 10 & 15 \end{array}\right], \mathrm{B}=\left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & -1 & 3 \\ 1 & 2 & 3 \end{array}\right], \mathrm{C}=\left[\begin{array}{lll} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 6 & 8 \end{array}\right], \mathrm{D}=\left[\begin{array}{lll} 2 & 4 & 2 \\ 1 & 1 & 0 \\ 1 & 4 & 5 \end{array}\right] \end{aligned}$$