A circuit has self-inductance 'L' H and carries a current 'I' A. To prevent sparking when the circuit is switched off, a capacitor which can withstand 'V' volt is used. The least capacitance of the capacitor connected across the switch must be equal to
A straight wire of diameter $$0.4 \mathrm{~mm}$$ carrying a current of $$2 \mathrm{~A}$$ is replaced by another wire of 0.8 $$\mathrm{mm}$$ diameter carrying the same current. The magnetic field at distance $$(\mathrm{R})$$ from both the wires is 'B$$_1$$' and 'B$$_2$$' respectively. The relation between B$$_1$$ and B$$_2$$ is
In a CE transistor, a change of $$8.0 \mathrm{~mA}$$ in the emitter current produces a change of $$7.8 \mathrm{~mA}$$ in the collector current. What change in the base current is necessary to produce the same change in the collector current?
Water rises upto a height of $$4 \mathrm{~cm}$$ in a capillary tube. The lower end of the capillary tube is at a depth of $$8 \mathrm{~cm}$$ below the water level. The mouth pressure required to blow an air bubble at the lower end of the capillary will be '$$\mathrm{X}$$' $$\mathrm{cm}$$ of water, where $$\mathrm{X}$$ is equal to