According to de-Broglie hypothesis if an electron of mass '$$m$$' is accelerated by potential difference '$$V$$', the associated wavelength is '$$\lambda$$'. When a proton of mass '$$\mathrm{M}$$' is accelerated through potential difference $$9 \mathrm{~V}$$, then the wavelength associated with it is
What is the effect of pressure on the speed of sound in a medium, if pressure is doubled at constant temperature?
Two sound waves having wavelengths $$5.0 \mathrm{~m}$$ and $$5.5 \mathrm{~m}$$ propagates in a gas with velocity 300 $$\mathrm{m} / \mathrm{s}$$. The number of heats produced per second is
In biprism experiment, $$6^{\text {th }}$$ bright band with wavelength '$$\lambda_1$$' coincides with $$7^{\text {th }}$$ dark band with wavelength '$$\lambda_2$$' then the ratio $$\lambda_1: \lambda_2$$ is (other setting remains the same)