de-Broglie wavelength associated with an electron accelerated through a potential difference '$$\mathrm{V}$$' is '$$\lambda$$'. When the accelerating potential is increased to '$$4 \mathrm{~V}$$', de-Broglie wavelength.
When the temperature of a semiconductor is increased, its resistance and electric conductivity respectively.
A bob of simple pendulum of mass 'm' perform $$\mathrm{SHM}$$ with amplitude '$$\mathrm{A}$$' and period 'T'. Kinetic energy of pendulum of displacement $$x=\frac{A}{2}$$ will be
Two positive ions, each carrying a charge 'q' are separated by a distance 'd'. If 'F' is the force of repulsion between the ions, the number of electrons from each ion will be ($$\varepsilon$$ = charge on $$\varepsilon_k$$ = permittivity of free space)