1
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable X has the following probability distribution

$$\mathrm{X=x}$$ 0 1 2 3 4 5 6 7
$$\mathrm{P[X=x]}$$ 0 $$\mathrm{k}$$ $$\mathrm{2k}$$ $$\mathrm{2k}$$ $$\mathrm{3k}$$ $$\mathrm{k^2}$$ $$\mathrm{2k^2}$$ $$\mathrm{7k^2+k}$$

then F(4) =

A
$$\frac{3}{10}$$
B
$$\frac{1}{10}$$
C
$$\frac{7}{10}$$
D
$$\frac{4}{5}$$
2
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

A differential equation for the temperature 'T' of a hot body as a function of time, when it is placed in a bath which is held at a constant temperature of 32$$^\circ$$ F, is given by (where k is a constant of proportionality)

A
$$\mathrm{\frac{dT}{dt}=kT-32}$$
B
$$\mathrm{\frac{dT}{dt}=kT+32}$$
C
$$\mathrm{\frac{dT}{dt}=-k(T-32)}$$
D
$$\mathrm{\frac{dT}{dt}=32kT}$$
3
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_\limits0^{\pi / 4} \log (1+\tan x) d x=$$

A
$$\frac{\pi}{16} \log 2$$
B
$$\frac{\pi}{4} \log 2$$
C
$$\frac{\pi}{8} \log 2$$
D
$$\pi \log 2$$
4
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

A particle is moving on a straight line. The distance $$\mathrm{S}$$ travelled in time $$\mathrm{t}$$ is given by $$\mathrm{S=a t^2+b t+6}$$. If the particle comes to rest after 4 seconds at a distance of $$16 \mathrm{~m}$$. from the starting point, then the acceleration of the particle is.

A
$$\frac{-3}{4} \mathrm{~m} / \mathrm{sec}^2$$
B
$$\frac{-1}{2} \mathrm{~m} / \mathrm{sec}^2$$
C
$$-1 \mathrm{~m} / \mathrm{sec}^2$$
D
$$\frac{-5}{4} \mathrm{~m} / \mathrm{sec}^2$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12