On an imaginary linear scale of temperature (called 'W' scale) the freezing and boiling points of water are 39$$^\circ$$ W and 239$$^\circ$$ W respectively. The temperature on the new scale corresponding to 39$$^\circ$$C temperature on Celsius scale will be
When a d.c. voltage of $$200 \mathrm{~V}$$ is applied to a coil of self-inductance $$\left(\frac{2 \sqrt{3}}{\pi}\right) \mathrm{H}$$, a current of $$1 \mathrm{~A}$$ flows through it. But by replacing d.c. source with a.c. source of $$200 \mathrm{~V}$$, the current in the coil is reduced to $$0.5 \mathrm{~A}$$. Then the frequency of a.c. supply is
When light of wavelength '$$\lambda$$' is incident on a photosensitive surface, photons of power 'P' are emitted. The number of photon 'n' emitted in time 't' is [h = Planck's constant, c = velocity of light in vacuum]
Air is pushed in a soap bubble to increase its radius from 'R' to '2R'. In this case, the pressure inside the bubble