1
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If inverse of $$\left[\begin{array}{ccc}1 & 2 & x \\ 4 & -1 & 7 \\ 2 & 4 & -6\end{array}\right]$$ does not exist, then $$x=$$

A
$$-$$3
B
2
C
3
D
0
2
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$\frac{d y}{d x}=\frac{x+y+1}{x+y-1}$$ is given by

A
$$y=x \log (x+y)+c$$
B
$$x-y=\log (x+y)+c$$
C
$$x+y=\log (x+y)+c$$
D
$$y=x+\log (x+y)+c$$
3
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The logical expression $$\mathrm{p} \wedge(\sim \mathrm{p} \vee \sim \mathrm{q}) \equiv$$

A
$$p \vee q$$
B
$$p \wedge q$$
C
F
D
T
4
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The parametric equations of a line passing through the points $$\mathrm{A}(3,4,-7)$$ and $$\mathrm{B}(1,-1,6)$$ are

A
$$x=3+\lambda, y=-1+4 \lambda, z=-7+6 \lambda$$
B
$$x=-2+3 \lambda, y=-5+4 \lambda, z=13-7 \lambda$$
C
$$x=1+3 \lambda, y=-1+4 \lambda, z=6-7 \lambda$$
D
$$x=3-2 \lambda, y=4-5 \lambda, z=-7+13 \lambda$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12