1
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\overline{\mathrm{a}}, \overline{\mathrm{b}} , \overline{\mathrm{c}}$$ are three vectors which are perpendicular to $$\overline{\mathrm{b}}+\overline{\mathrm{c}}, \overline{\mathrm{c}}+\overline{\mathrm{a}}$$ and $$\overline{\mathrm{a}}+\overline{\mathrm{b}}$$ respectively, such that $$|\bar{a}|=2,|\bar{b}|=3,|\bar{c}|=4$$, then $$|\bar{a}+\bar{b}+\bar{c}|=$$

A
29
B
3
C
9
D
$$\sqrt{29}$$
2
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the lines $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$$ and $$\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$$ intersect, then the values of $$k$$ is

A
$$\frac{3}{2}$$
B
$$\frac{-3}{2}$$
C
$$\frac{-2}{9}$$
D
$$\frac{9}{2}$$
3
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If inverse of $$\left[\begin{array}{ccc}1 & 2 & x \\ 4 & -1 & 7 \\ 2 & 4 & -6\end{array}\right]$$ does not exist, then $$x=$$

A
$$-$$3
B
2
C
3
D
0
4
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$\frac{d y}{d x}=\frac{x+y+1}{x+y-1}$$ is given by

A
$$y=x \log (x+y)+c$$
B
$$x-y=\log (x+y)+c$$
C
$$x+y=\log (x+y)+c$$
D
$$y=x+\log (x+y)+c$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12