The side of an equilateral triangle expands at the rate of $$\sqrt{3} \mathrm{~cm} / \mathrm{sec}$$. When the side is $$12 \mathrm{~cm}$$, the rate of increase of its area is
$$ \text { If } P=\left[\begin{array}{lll} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{array}\right] \text { is the adjoint of a } 3 \times 3 \text { matrix } A \text { and }|A|=4 \text { then } \alpha \text { is equal to } $$
$$ \text { If } f(x)=\left\{\begin{array}{cc} \frac{1-\sin x}{(\pi-2 x)^2} & , \quad \text { if } x \neq \frac{\pi}{2} \\ \lambda, & \text { if } x=\frac{\pi}{2} \end{array}\right. $$
Then $$f(x)$$ will be continues function at $$x=\frac{\pi}{2}$$, then $$\lambda=$$
$$\begin{aligned} &\begin{aligned} & \text { A, B, C are subsets of the Universal set U } \\ & \text { If } \mathrm{A}=\{x: x \text { is even number, } x \leq 20\} \\ & \mathrm{B}=\{x: x \text { is multiple of } 3, x \leq 15\} \\ & \mathrm{C}=\{x: x \text { is multiple of } 5, x \leq 20\} \\ & \mathrm{U}=\text { Set of whole numbers } \end{aligned}\\ &\text { then the Venn diagram representing } \mathrm{U}, \mathrm{A}, \mathrm{B} \text { and } \mathrm{C} \text { is } \end{aligned}$$