$$ \text { If } f(x)=\left\{\begin{array}{cc} \frac{1-\sin x}{(\pi-2 x)^2} & , \quad \text { if } x \neq \frac{\pi}{2} \\ \lambda, & \text { if } x=\frac{\pi}{2} \end{array}\right. $$
Then $$f(x)$$ will be continues function at $$x=\frac{\pi}{2}$$, then $$\lambda=$$
$$\begin{aligned} &\begin{aligned} & \text { A, B, C are subsets of the Universal set U } \\ & \text { If } \mathrm{A}=\{x: x \text { is even number, } x \leq 20\} \\ & \mathrm{B}=\{x: x \text { is multiple of } 3, x \leq 15\} \\ & \mathrm{C}=\{x: x \text { is multiple of } 5, x \leq 20\} \\ & \mathrm{U}=\text { Set of whole numbers } \end{aligned}\\ &\text { then the Venn diagram representing } \mathrm{U}, \mathrm{A}, \mathrm{B} \text { and } \mathrm{C} \text { is } \end{aligned}$$
The foot of the perpendicular from $$(2,4,-1)$$ to the line $$x+5=\frac{1}{4}(y+3)=-\frac{1}{9}(z-6)$$ is
In how many ways can the word "CHRISTMAS" be arranged so that the letters '$$\mathrm{C}$$' and '$$\mathrm{M}$$' are never adjacent?