1
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $$f(x)=2 x^3+9 x^2+\lambda x+20$$ is a decreasing function of $$x$$ in the largest possible interval $$(-2,-1)$$, then $$\lambda$$ is equal to

A
$$-12$$
B
$$-6$$
C
$$12$$
D
$$6$$
2
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$\int \sqrt{x^2-4 x+2} d x=$$

A
$$ \frac{1}{2}(x-2) \sqrt{x^2-4 x+2}+\log \left|(x-2)+\sqrt{x^2-4 x+2}\right|+C $$
B
$$ (x-2) \sqrt{x^2-4 x+2}+\frac{1}{2} \log \left|(x-2)+\sqrt{x^2-4 x+2}\right|+C $$
C
$$ \frac{1}{2}(x-2) \sqrt{x^2-4 x+2}-\sin ^{-1} \frac{x-2}{\sqrt{2}}+C $$
D
$$ \frac{1}{2}(x-2) \sqrt{x^2-4 x+2}-\log \left|(x-2)+\sqrt{x^2-4 x+2}\right|+C $$
3
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$4\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right) \text { is equal to }$$

A
$$ \frac{1}{8} $$
B
$$ \frac{1}{4} $$
C
$$ \frac{1}{2} $$
D
1
4
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The minimum value of $$Z=150 x+200 y$$ for the given constraints

$$\begin{aligned} & 3 x+5 y \geq 30 \\ & x+y \geq 8 ; x \geq 0, y \geq 0 \text { is } \end{aligned}$$

A
0
B
1600
C
1350
D
1200
EXAM MAP