1
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

The co-ordinate of the foot of the perpendicular from $$P(1,8,4)$$ on the line joining $$R(0,-1,3)$$ and $$Q(2,-3,-1)$$ is

A
$$ \left(\frac{-5}{3}, \frac{-2}{3}, \frac{-19}{3}\right) $$
B
$$ \left(\frac{5}{3}, \frac{2}{3}, \frac{-19}{3}\right) $$
C
$$ \left(\frac{-5}{3}, \frac{2}{3}, \frac{19}{3}\right) $$
D
$$ \left(\frac{5}{3}, \frac{2}{3}, \frac{19}{3}\right) $$
2
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \text { The general solution of the differential equation }(1+\tan y)(d x-d y)+2 x d y=0 \text { is } $$

A
$$y(\sin x+\cos x)=\sin x+c e^x$$
B
$$y(\sin x+\cos x)=\sin x+c e^{-x}$$
C
$$x(\sin y+\cos y)=\sin y+c e^y$$
D
$$x(\sin y+\cos y)=\sin y+c e^{-y}$$
3
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $$a$$ is a real number such that $$\int_\limits0^a x d x \leq a+4$$ then

A
$$ -2 \leq a \leq 0 $$
B
$$ 0 \leq a \leq 4 $$
C
$$ -2 \leq a \leq 4 $$
D
$$ a \leq-2 \text { or } a \geq 4 $$
4
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

Find the value of '$$b$$' such that the scalar product of the vector $$\hat{\imath}+\hat{\jmath}+\hat{k}$$ with the unit vector parallel to the sum of the vectors $$2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$$ and $$b \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$$ is unity

A
$$-2$$
B
0
C
$$-1$$
D
1
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12