Suppliers(sid : integer, sname : string, city : string, street : string)
Parts(pid : integer, pname : string, color : string)
Catalog(sid : integer, pid : integer, cost : real)
Consider the following relational query on the above database:SELECT S.sname
FROM Suppliers S
WHERE S.sid NOT IN
(SELECT C.sid
FROM Catalog C
WHERE C.pid NOT IN
(SELECT P.pid
FROM Parts P
WHERE P.color<> 'blue'))
Assume that relations corresponding to the above schema are not empty. Which one of the following is the correct interpretation of the above query?Suppliers(sid : integer, sname : string, city : string, street : string)
Parts(pid : integer, pname : string, color : string)
Catalog(sid : integer, pid : integer, cost : real)
Assume that, in the suppliers relation above, each supplier and each street within a city has a unique name, and (sname, city) forms a candidate key. No other functional dependencies are implied other than those implied by primary and candidate keys. Which one of the following is TRUE about the above schema?T1: R1[ x ] W1[ x ] W1[ y ]
T2: R2[ x ] R2[ y ] W2[ y ]
S1: R1[ x ] R2[ x ] R2[ y ] W1[ x ] W1[ y ] W2[ y ]
S2: R1[ x ] R2[ x ] R2[ y ] W1[ x ] W2[ y ] W1[ y ]
S3: R1[ x ] W1[ x ] R2[ x ] W1[ y ] R2[ y ] W2[ y ]
S4: R2[ x ] R2[ y ] R1[ x ] W1[ x ] W1[ y ] W2[ y ]
I. $$\pi_{R-S}(r) - \pi_{R-S} \left (\pi_{R-S} (r) \times s - \pi_{R-S,S}(r)\right )$$
II. $$\left\{t \mid t \in \pi_{R-S} (r) \wedge \forall u \in s \left(\exists v \in r \left(u = v[S] \wedge t = v\left[R-S\right]\right )\right )\right\}$$
III.$$\left\{t \mid t \in \pi_{R-S} (r) \wedge \forall v \in r \left(\exists u \in s \left(u = v[S] \wedge t = v\left[R-S\right]\right )\right ) \right\}$$
IV. Select R.a, R.b
From R, S
Where R.c = S.c
Which of the above queries are equivalent?