1
GATE CE 2005
MCQ (Single Correct Answer)
+2
-0.6
Transformation to linear form by substituting $$v = {y^{1 - n}}$$ of the equation $${{dy} \over {dt}} + p\left( t \right)y = q\left( t \right){y^n},\,\,n > 0$$ will be
A
$${{dv} \over {dt}} + \left( {1 - n} \right)pv = \left( {1 - n} \right)q$$
B
$${{dv} \over {dt}} + \left( {1 + n} \right)pv = \left( {1 + n} \right)q$$
C
$${{dv} \over {dt}} + \left( {1 + n} \right)pv = \left( {1 - n} \right)q$$
D
$${{dv} \over {dt}} + \left( {1 - n} \right)pv = \left( {1 + n} \right)q$$
2
GATE CE 2005
MCQ (Single Correct Answer)
+2
-0.6
The solution $${{{d^2}y} \over {d{x^2}}} + 2{{dy} \over {dx}} + 17y = 0;$$ $$y\left( 0 \right) = 1,{\left( {{{d\,y} \over {d\,x}}} \right)_{x = {\raise0.5ex\hbox{$\scriptstyle \pi $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 4$}}}} = 0\,\,$$ in the range $$0 < x < {\pi \over 4}$$ is given by
A
$${e^{ - x}}\left[ {\cos \,4x + {1 \over 4}\sin \,4x} \right]$$
B
$${e^x}\left[ {\cos \,4x - {1 \over 4}\sin \,4x} \right]$$
C
$${e^{ - 4x}}\left[ {\cos \,4x - {1 \over 4}\sin \,x} \right]$$
D
$${e^{ - 4x}}\left[ {\cos \,4x - {1 \over 4}\sin \,4x} \right]$$
3
GATE CE 2005
MCQ (Single Correct Answer)
+1
-0.3
Which one of the following is not true for the complex number z1 and z2 ?
A
$${{{z_1}} \over {{z_2}}} = {{{z_1}\overline {{z_2}} } \over {{{\left| {{z_2}} \right|}^2}}}$$
B
$$\left| {{z_1}\, + \,\,{z_2}} \right| \le \,\left| {{z_1}} \right|\, + \,\left| {{z_2}} \right|$$
C
$$\left| {{z_1}\, + \,\,{z_2}} \right| \le \,\left| {\left| {{z_1}} \right|\, - \,\left| {{z_2}} \right|} \right|$$
D
$${\left| {{z_1}\, + \,\,{z_2}} \right|^2}\, + \,{\left| {{z_1}\, - \,\,{z_2}} \right|^2} = \,\,2{\left| {{z_1}} \right|^2}\, + \,2{\left| {{z_2}} \right|^2}$$
4
GATE CE 2005
MCQ (Single Correct Answer)
+2
-0.6
Consider likely applicability of Cauchy's Integral theorem to evaluate the following integral counterclockwise around the unit circle C.

$$I\, = \,\oint\limits_C {\sec z\,dz} $$, z being a complex variable. The value of I will be
A
I = 0 ; Singularities set = $$\phi $$
B
I = 0 ; Singularities set = $$\left\{ { \pm {{\left( {2n + 1} \right)} \over 2}\pi \,\,;\,n = 0,1,2,.....} \right\}$$
C
I = 0 ; Singularities set = $$\left\{ { \pm \,n\pi \,\,;\,n = 0,1,2,.....} \right\}$$
D
None of the above
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12