1
GATE CE 2005
MCQ (Single Correct Answer)
+1
-0.3
Consider the system of equations, $${A_{nxn}}\,\,{X_{nx1}}\,\, = \lambda \,{X_{nx1}}$$ where $$\lambda $$ is a scalar. Let $$\left( {{\lambda _i},\,\,{X_i}} \right)$$ be an eigen value and its corresponding eigen vector for real matrix $$A$$. Let $${{\rm I}_{nxn}}$$ be unit matrix. Which one of the following statement is not correct?
A
For a homogeneous $$nxn$$ system of linear equations $$\left( {A - \lambda {\rm I}} \right)X = 0,$$ having a non trivial solution, the rank of $$\left( {A - \lambda {\rm I}} \right)$$ is less then $$n.$$
B
For matrix $${A^m},$$ $$m$$ being a positive integer, $$\left( {{\lambda _i}^m,\,{X_i}^m} \right)$$ will be eigen pair for all $$i.$$
C
If $${A^T} = {A^{ - 1}}$$ then $$\left| {{\lambda _i}} \right| = 1$$ for all $$i.$$
D
If $${A^T} = A$$ then $${{\lambda _i}}$$ are real for all $$i.$$
2
GATE CE 2005
MCQ (Single Correct Answer)
+2
-0.6
Value of the integral $$\,\,\oint {xydy - {y^2}dx,\,\,} $$ where, $$c$$ is the square cut from the first quadrant by the line $$x=1$$ and $$y=1$$ will be (Use Green's theorem to change the line integral into double integral)
A
$$1/2$$
B
$$1$$
C
$$3/2$$
D
$$5/3$$
3
GATE CE 2005
MCQ (Single Correct Answer)
+2
-0.6
Transformation to linear form by substituting $$v = {y^{1 - n}}$$ of the equation $${{dy} \over {dt}} + p\left( t \right)y = q\left( t \right){y^n},\,\,n > 0$$ will be
A
$${{dv} \over {dt}} + \left( {1 - n} \right)pv = \left( {1 - n} \right)q$$
B
$${{dv} \over {dt}} + \left( {1 + n} \right)pv = \left( {1 + n} \right)q$$
C
$${{dv} \over {dt}} + \left( {1 + n} \right)pv = \left( {1 - n} \right)q$$
D
$${{dv} \over {dt}} + \left( {1 - n} \right)pv = \left( {1 + n} \right)q$$
4
GATE CE 2005
MCQ (Single Correct Answer)
+2
-0.6
The solution $${{{d^2}y} \over {d{x^2}}} + 2{{dy} \over {dx}} + 17y = 0;$$ $$y\left( 0 \right) = 1,{\left( {{{d\,y} \over {d\,x}}} \right)_{x = {\raise0.5ex\hbox{$\scriptstyle \pi $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 4$}}}} = 0\,\,$$ in the range $$0 < x < {\pi \over 4}$$ is given by
A
$${e^{ - x}}\left[ {\cos \,4x + {1 \over 4}\sin \,4x} \right]$$
B
$${e^x}\left[ {\cos \,4x - {1 \over 4}\sin \,4x} \right]$$
C
$${e^{ - 4x}}\left[ {\cos \,4x - {1 \over 4}\sin \,x} \right]$$
D
$${e^{ - 4x}}\left[ {\cos \,4x - {1 \over 4}\sin \,4x} \right]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12