1
GATE CE 1997
MCQ (Single Correct Answer)
+1
-0.3
If $$\varphi \left( x \right) = \int\limits_0^{{x^2}} {\sqrt t \,dt\,} $$ then $${{d\varphi } \over {dx}} = \_\_\_\_\_\_\_.$$
A
$$2\,{x^2}$$
B
$$\sqrt x $$
C
$$0$$
D
$$1$$
2
GATE CE 1997
MCQ (Single Correct Answer)
+1
-0.3
If $$y = \left| x \right|$$ for $$x < 0$$ and $$y=x$$ for $$x \ge 0$$ then
A
$${{dy} \over {dx}}$$ is discontinuous at $$x=0$$
B
$$y$$ is discontinuous at $$x=0$$
C
$$y$$ is not defined at $$x=0$$
D
Both $$y$$ and $${{dy} \over {dx}}$$ are discontinuous at $$x=0$$
3
GATE CE 1997
MCQ (Single Correct Answer)
+1
-0.3
If the determinant of the matrix $$\left[ {\matrix{ 1 & 3 & 2 \cr 0 & 5 & { - 6} \cr 2 & 7 & 8 \cr } } \right]$$ is $$26,$$ then the determinant of
the matrix $$\left[ {\matrix{ 2 & 7 & 8 \cr 0 & 5 & { - 6} \cr 1 & 3 & 2 \cr } } \right]$$ is
A
$$-26$$
B
$$26$$
C
$$0$$
D
$$52$$
4
GATE CE 1997
MCQ (Single Correct Answer)
+1
-0.3
Inverse of matrix $$\left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 1 & 0 & 0 \cr } } \right]$$ is
A
$$\left[ {\matrix{ 0 & 0 & 1 \cr 1 & 0 & 0 \cr 0 & 1 & 0 \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right]$$
C
$$\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
D
$$\left[ {\matrix{ 0 & 0 & 1 \cr 0 & 1 & 0 \cr 1 & 0 & 0 \cr } } \right]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12