NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
VISIT NOW

WB JEE

Indefinite Integrals

Mathematics

Previous Years Questions

MCQ (Single Correct Answer)

More
Let $$\int {{{{x^{{1 \over 2}}}} \over {\sqrt {1 - {x^3}} }}dx = {2 \over 3}g(f(x)) + c} $$ ; then (c denotes constant o...
WB JEE 2022
$$I = \int {\cos (\ln x)dx} $$. Then I =
WB JEE 2022
If $$\int {{{\sin 2x} \over {{{(a + b\cos x)}^2}}}dx} = \alpha \left[ {{{\log }_e}\left| {a + b\cos x} \right| + {a \ov...
WB JEE 2021
$$\int {{{f(x)\phi '(x) + \phi (x)f'(x)} \over {(f(x)\phi (x) + 1)\sqrt {f(x)\phi (x) - 1} }}dx = } $$
WB JEE 2020
If $$\int {{2^{{2^x}}}.\,{2^x}dx} = A\,.\,{2^{{2^x}}} + C$$, then A is equal to
WB JEE 2019
y = $$\int {\cos \left\{ {2{{\tan }^{ - 1}}\sqrt {{{1 - x} \over {1 + x}}} } \right\}} dx$$ is an equation of a family o...
WB JEE 2019
If $$\int {\cos x\log \left( {\tan {x \over 2}} \right)} dx$$ = $$\sin x\log \left( {\tan {x \over 2}} \right)$$ + f(x),...
WB JEE 2019
If $$\int {f(x)} \sin x\cos xdx = {1 \over {2({b^2} - {a^2})}}\log (f(x)) + c$$, where c is the constant of integration,...
WB JEE 2018
If $$\int {{e^{\sin x}}} .\left[ {{{x{{\cos }^3}x - \sin x} \over {{{\cos }^2}x}}} \right]dx = {e^{\sin x}}f(x) + c$$, w...
WB JEE 2018
Let I = $$\left| {\int {_{10}^{19}{{\sin x} \over {1 + {x^8}}}dx} } \right|$$. Then,
WB JEE 2017
$$\int {{{{x^2} - 1} \over {{x^4} + 3{x^2} + 1}}dx} $$ (x > 0) is
WB JEE 2017
$$\int {\cos (\log x)dx} $$ = F(x) + C, where C is an arbitrary constant. Here, F(x) is equal to
WB JEE 2017
$$\int {{2^x}(f'(x) + f(x)\log 2)dx} $$ is
WB JEE 2011
$$\int {{{{{\sin }^8}x - {{\cos }^8}x} \over {1 - 2{{\sin }^2}x{{\cos }^2}x}}dx} $$
WB JEE 2011
$$\int {{{\cos 2x} \over {\cos x}}dx = } $$
WB JEE 2011
$$\int {{{{x^3}dx} \over {1 + {x^8}}} = } $$
WB JEE 2011
$$\int {\sqrt {1 + \cos x} dx} $$ is equal to
WB JEE 2010
The value of the integral $$\int {{{dx} \over {{{({e^x} + {e^{ - x}})}^2}}}} $$ is
WB JEE 2010
$$\int {{e^x}\left( {{2 \over x} - {2 \over {{x^2}}}} \right)dx} $$ is equal to
WB JEE 2010
$$\int {{{\log \sqrt x } \over {3x}}dx} $$ is equal to
WB JEE 2010
$$\int {{{{{\sin }^{ - 1}}x} \over {\sqrt {1 - {x^2}} }}dx} $$ equal to where c is an arbitrary constant
WB JEE 2009
$$\int {{{dx} \over {\sin x + \sqrt 3 \cos x}}} $$ equals
WB JEE 2009
The value of $$\int\limits_{ - 1}^1 {{{|x + 2|} \over {x + 2}}dx} $$ is
WB JEE 2009
The value of $$\mathop {\lim }\limits_{n \to \infty } \left[ {{n \over {{n^2} + {1^2}}} + {n \over {{n^2} + {2^2}}} + .....
WB JEE 2009
$$\int {{{dx} \over {x(x + 1)}}} $$ equals where c is arbitrary constant.
WB JEE 2009

Subjective

More
Evaluate $$\int {{{{x^2}} \over {x(1 + {x^2})}}dx} $$
WB JEE 2008

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12