1
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{f}(1)=1, \mathrm{f}^{\prime}(1)=3$$, then the derivative of $$\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$$ at $$x=1$$ is

A
12
B
19
C
23
D
33
2
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Three fair coins numbered 1 and 0 are tossed simultaneously. Then variance Var (X) of the probability distribution of random variable $$\mathrm{X}$$, where $$\mathrm{X}$$ is the sum of numbers on the uppermost faces, is

A
0.7
B
0.75
C
0.65
D
0.62
3
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1}{\sin (x-a) \sin x} d x=$$

A
$$ \sin \mathrm{a}(\log (\sin (x-\mathrm{a}) \cdot \operatorname{cosec} x))+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\operatorname{cosec} a(\log (\sin (x-a) \cdot \operatorname{cosec} x))+c$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$-\sin \mathrm{a}(\log (\sin (x-\mathrm{a}) \cdot \sin x))+\mathrm{c}$$, where c is a constant of integration.
D
$$-\operatorname{cosec} \mathrm{a}(\log (\sin (x-\mathrm{a}) \cdot \sin x))+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
4
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The derivative of $$\mathrm{f}(\sec x)$$ with respect to $$g(\tan x)$$ at $$x=\frac{\pi}{4}$$, where $$f^{\prime}(\sqrt{2})=4$$ and $$g^{\prime}(1)=2$$, is

A
2
B
$$\frac{1}{\sqrt{2}}$$
C
$$\sqrt{2}$$
D
$$\frac{1}{2 \sqrt{2}}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12