1
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\cos ^{-1} x-\cos ^{-1} \frac{y}{3}=\alpha$$, where $$-1 \leq x \leq 1, -3 \leq y \leq 3, x \leq \frac{y}{3}$$, then for all $$x, y$$ $$9 x^2-6 x y \cos \alpha+y^2$$ is equal to

A
$$\sin ^2 \alpha$$
B
$$3 \sin ^2 \alpha$$
C
$$9 \sin ^2 \alpha$$
D
$$\frac{4}{9} \sin ^2 \alpha$$
2
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{f}(1)=1, \mathrm{f}^{\prime}(1)=3$$, then the derivative of $$\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$$ at $$x=1$$ is

A
12
B
19
C
23
D
33
3
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Three fair coins numbered 1 and 0 are tossed simultaneously. Then variance Var (X) of the probability distribution of random variable $$\mathrm{X}$$, where $$\mathrm{X}$$ is the sum of numbers on the uppermost faces, is

A
0.7
B
0.75
C
0.65
D
0.62
4
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1}{\sin (x-a) \sin x} d x=$$

A
$$ \sin \mathrm{a}(\log (\sin (x-\mathrm{a}) \cdot \operatorname{cosec} x))+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\operatorname{cosec} a(\log (\sin (x-a) \cdot \operatorname{cosec} x))+c$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$-\sin \mathrm{a}(\log (\sin (x-\mathrm{a}) \cdot \sin x))+\mathrm{c}$$, where c is a constant of integration.
D
$$-\operatorname{cosec} \mathrm{a}(\log (\sin (x-\mathrm{a}) \cdot \sin x))+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
MHT CET Papers
EXAM MAP