If truth values of statements $$\mathrm{p}, \mathrm{q}$$ are true, and $$\mathrm{r}$$, $$s$$ are false, then the truth values of the following statement patterns are respectively
$$\begin{aligned} & \mathrm{a}: \sim(\mathrm{p} \wedge \sim \mathrm{r}) \vee(\sim \mathrm{q} \vee \mathrm{s}) \\ & \mathrm{b}:(\sim \mathrm{q} \wedge \sim \mathrm{r}) \leftrightarrow(\mathrm{p} \vee \mathrm{s}) \\ & \mathrm{c}:(\sim \mathrm{p} \vee \mathrm{q}) \rightarrow(\mathrm{r} \wedge \sim \mathrm{s}) \end{aligned}$$
The rate of change of $$\sqrt{x^2+16}$$ with respect to $$\frac{x}{x-1}$$ at $$x=5$$ is
If $$x^2+y^2=\mathrm{t}+\frac{1}{\mathrm{t}}$$ and $$x^4+y^4=\mathrm{t}^2+\frac{1}{\mathrm{t}^2}$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ is equal to
Two tangents to the circle $$x^2+y^2=4$$ at the points $$\mathrm{A}$$ and $$\mathrm{B}$$ meet at the point $$\mathrm{P}(-4,0)$$. Then the area of the quadrilateral $$\mathrm{PAOB}, \mathrm{O}$$ being the origin, is