1
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let two non-collinear vectors $$\hat{a}$$ and $$\hat{b}$$ form an acute angle. A point $$\mathrm{P}$$ moves, so that at any time $$t$$ the position vector $$\overline{\mathrm{OP}}$$, where $$\mathrm{O}$$ is origin, is given by $$\hat{a} \sin t+\hat{b} \cos t$$, when $$P$$ is farthest from origin $$O$$, let $$M$$ be the length of $$\overline{\mathrm{OP}}$$ and $$\hat{\mathrm{u}}$$ be the unit vector along $$\overline{\mathrm{OP}}$$, then

A
$$\hat{\mathrm{u}}=\frac{\hat{\mathrm{a}}+\hat{\mathrm{b}}}{|\hat{\mathrm{a}}+\hat{\mathrm{b}}|}$$ and $$\mathrm{M}=(1+\hat{\mathrm{a}} \cdot \hat{\mathrm{b}})^{\frac{1}{2}}$$
B
$$\hat{\mathrm{u}}=\frac{\hat{\mathrm{a}}-\hat{\mathrm{b}}}{|\hat{\mathrm{a}}-\hat{\mathrm{b}}|}$$ and $$\mathrm{M}=(1+\hat{\mathrm{a}} \cdot \hat{\mathrm{b}})^{\frac{1}{2}}$$
C
$$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$$ and $$M=(1+2 \hat{a} \cdot \hat{b})^{\frac{1}{2}}$$
D
$$\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$$ and $$M=(1-2 \hat{a} \cdot \hat{b})^{\frac{1}{2}}$$
2
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of solutions in $$[0,2 \pi]$$ of the equation $$16^{\sin ^2 x}+16^{\cos ^2 x}=10$$ is

A
2
B
4
C
6
D
8
3
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all parabolas, whose axes are parallel to $$\mathrm{Y}$$-axis, is

A
$$y_3=1$$
B
$$y_3=0$$
C
$$y_3=-1$$
D
$$y y_3+y_1=0$$
4
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $$c$$ of Lagrange's mean value theorem for $$f(x)=\sqrt{25-x^2}$$ on $$[1,5]$$ is

A
$$\sqrt{15}$$
B
5
C
$$\sqrt{10}$$
D
1
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12