A beam of unpolarized light passes through a tourmaline crystal A and then it passes through a second tourmaline crystal B oriented so that its principal plane is parallel to that of A. The intensity of emergent light is $$I_0$$. Now B is rotated by $$45^{\circ}$$ about the ray. The emergent light will have intensity $$\left(\cos 45^{\circ}=\frac{1}{\sqrt{2}}\right)$$
The materials suitable for making electromagnets should have
A body falls on a surface of coefficient of restitution 0.6 from a height of $$1 \mathrm{~m}$$. Then the body rebounds to a height of
In a diffraction pattern due to single slit of width '$$a$$', the first minimum is observed at an angle of $$30^{\circ}$$ when the light of wavelength $$5400 \mathop A\limits^o$$ is incident on the slit. The first secondary maximum is observed at an angle of $$\left(\sin 30^{\circ}=\frac{1}{2}\right)$$