Two lines $$\frac{x-3}{1}=\frac{y+1}{3}=\frac{z-6}{-1}$$ and $$\frac{x+5}{7}=\frac{y-2}{-6}=\frac{z-3}{4} \quad$$ intersect at the point R. Then reflection of $$\mathrm{R}$$ in the $$x y$$-plane has co-ordinates
The value of $$\int \frac{\left(x^2-1\right) d x}{x^3 \sqrt{2 x^4-2 x^2+1}}$$ is
The shaded area in the figure given below is a solution set of a system of inequations. The minimum value of objective function $$3 x+5 y$$, subject to the linear constraints given by this system of inequations is
If $$\overline{\mathrm{a}}=\mathrm{m} \overline{\mathrm{b}}+\mathrm{nc}$$, where $$\overline{\mathrm{a}}=4 \hat{\mathrm{i}}+13 \hat{\mathrm{j}}-18 \hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overline{\mathrm{c}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$$, then $$\mathrm{m}+\mathrm{n}=$$