1
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$$ and $$\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$$ be continuous functions. Then the value of the integral $$\int_\limits{\frac{-\pi}{2}}^{\frac{\pi}{2}}[\mathrm{f}(x)+\mathrm{f}(-x)][\mathrm{g}(x)-\mathrm{g}(-x)] \mathrm{d} x$$ is

A
$$\pi$$
B
1
C
$$-1$$
D
0
2
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\bar{p}=\hat{i}+\hat{j}+\hat{k}$$ and $$\bar{q}=\hat{i}-2 \hat{j}+\hat{k}$$. Then a vector of magnitude $$5 \sqrt{3}$$ units perpendicular to the vector $$\bar{q}$$ and coplanar with $$\bar{p}$$ and $$\bar{q}$$ is

A
$$5(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$$
B
$$5(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$$
C
$$5(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$$
D
$$5(\hat{i}+\hat{j}+\hat{k})$$
3
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $$\frac{{ }^{10} \mathrm{C}_{\mathrm{r}}}{{ }^{11} \mathrm{C}_{\mathrm{r}}}$$, when both the numerator and denominator are at their greatest values, is

A
$$\frac{6}{11}$$
B
$$\frac{1}{11}$$
C
$$\frac{4}{11}$$
D
$$\frac{3}{11}$$
4
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{3 x^2}{1+x^3}\right) y=\frac{1}{x^3+1}$$ is

A
$$y\left(1+x^3\right)=x^3+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$y\left(1+x^3\right)=x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$y\left(1+x^3\right)=x^2+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$y\left(1+x^3\right)=2 x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12