1
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$$ and $$\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$$ be continuous functions. Then the value of the integral $$\int_\limits{\frac{-\pi}{2}}^{\frac{\pi}{2}}[\mathrm{f}(x)+\mathrm{f}(-x)][\mathrm{g}(x)-\mathrm{g}(-x)] \mathrm{d} x$$ is

A
$$\pi$$
B
1
C
$$-1$$
D
0
2
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\bar{p}=\hat{i}+\hat{j}+\hat{k}$$ and $$\bar{q}=\hat{i}-2 \hat{j}+\hat{k}$$. Then a vector of magnitude $$5 \sqrt{3}$$ units perpendicular to the vector $$\bar{q}$$ and coplanar with $$\bar{p}$$ and $$\bar{q}$$ is

A
$$5(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$$
B
$$5(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$$
C
$$5(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$$
D
$$5(\hat{i}+\hat{j}+\hat{k})$$
3
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $$\frac{{ }^{10} \mathrm{C}_{\mathrm{r}}}{{ }^{11} \mathrm{C}_{\mathrm{r}}}$$, when both the numerator and denominator are at their greatest values, is

A
$$\frac{6}{11}$$
B
$$\frac{1}{11}$$
C
$$\frac{4}{11}$$
D
$$\frac{3}{11}$$
4
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{3 x^2}{1+x^3}\right) y=\frac{1}{x^3+1}$$ is

A
$$y\left(1+x^3\right)=x^3+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$y\left(1+x^3\right)=x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$y\left(1+x^3\right)=x^2+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$y\left(1+x^3\right)=2 x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
MHT CET Papers
EXAM MAP