1
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\bar{p}=\hat{i}+\hat{j}+\hat{k}$$ and $$\bar{q}=\hat{i}-2 \hat{j}+\hat{k}$$. Then a vector of magnitude $$5 \sqrt{3}$$ units perpendicular to the vector $$\bar{q}$$ and coplanar with $$\bar{p}$$ and $$\bar{q}$$ is

A
$$5(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$$
B
$$5(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$$
C
$$5(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$$
D
$$5(\hat{i}+\hat{j}+\hat{k})$$
2
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $$\frac{{ }^{10} \mathrm{C}_{\mathrm{r}}}{{ }^{11} \mathrm{C}_{\mathrm{r}}}$$, when both the numerator and denominator are at their greatest values, is

A
$$\frac{6}{11}$$
B
$$\frac{1}{11}$$
C
$$\frac{4}{11}$$
D
$$\frac{3}{11}$$
3
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{3 x^2}{1+x^3}\right) y=\frac{1}{x^3+1}$$ is

A
$$y\left(1+x^3\right)=x^3+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$y\left(1+x^3\right)=x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$y\left(1+x^3\right)=x^2+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$y\left(1+x^3\right)=2 x+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
4
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$y$$ is a function of $$x$$ and $$\log (x+y)=2 x y$$, then $$\frac{d y}{d x}$$ at $$x=0$$ is

A
0
B
$$-$$1
C
1
D
2
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12