The reaction taking place in a galvanic cell is as given
$$\mathrm{A}(\mathrm{s})+\mathrm{B}^{2+}\left(\mathbf{1} \mathbf{1} \mathbf{1 0} \mathbf{0}^{-\mathrm{M}} \mathbf{M}\right) \rightarrow \mathrm{B}_{(\mathrm{s})}+\mathrm{A}^{2+}(0.1 \mathrm{M}).$$
The emf of the cell is $$+2.651 \mathrm{~V}$$. If the standard emf of the cell is $$+2.71 \mathrm{~V}$$, what is the value of $$\mathrm{X}$$ ?
Which one of the following will undergo Nucleophilic substitution, by $$\mathrm{S}_{\mathrm{N}}{ }^1$$ mechanism, fastest?
The particular solution of $$e^{\frac{d y}{d x}}=2 x+1$$ given that $$y=1$$ when $$x=0$$ is
$$ \text { If } A=\left(\begin{array}{ll} 1 & 2 \\ 0 & 1 \end{array}\right) \quad P=\left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right) \quad Q=P^T A P, \quad \text { then } P Q^{2014} P^T \text { is equal to } $$