1
COMEDK 2023 Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \int e^x\left(1+\tan x+\tan ^2 x\right) d x \text { is equal to } $$

A
$$ e^x \cos x+c $$
B
$$ e^x \sin x+c $$
C
$$ e^x \tan x+c $$
D
$$ e^x \sec x+c $$
2
COMEDK 2023 Evening Shift
MCQ (Single Correct Answer)
+1
-0

In a $$\triangle A B C$$, if coordinates of point $$A$$ is $$(1,2)$$ and equation of the medians through $$B$$ and $$C$$ are $$x+y=5$$ and $$x=4$$ respectively, then the coordinates of $$B$$ is

A
(4, 1)
B
$$ (7,-2) $$
C
$$ (1,4) $$
D
$$ (-2,7) $$
3
COMEDK 2023 Evening Shift
MCQ (Single Correct Answer)
+1
-0

The distance of the point $$(2,3,4)$$ from the line $$1-x=\frac{y}{2}=\frac{1}{3}(1+z)$$ is

A
$$ \frac{2}{7} \sqrt{35} $$
B
$$ \frac{1}{7} \sqrt{35} $$
C
$$ \frac{4}{7} \sqrt{35} $$
D
$$ \frac{3}{7} \sqrt{35} $$
4
COMEDK 2023 Evening Shift
MCQ (Single Correct Answer)
+1
-0

The altitude of a cone is $$20 \mathrm{~cm}$$ and its semi vertical angle is $$30^{\circ}$$. If the semi vertical angle is increasing at the rate of $$2^0$$ per second, then the radius of the base is increasing at the rate of

A
$$ 160 \mathrm{~cm} / \mathrm{sec} $$
B
$$ 10 \mathrm{~cm} / \mathrm{sec} $$
C
$$ \frac{160}{3} \mathrm{~cm} / \mathrm{sec} $$
D
$$ 30 \mathrm{~cm} / \mathrm{sec} $$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12