Let $L, M$, and $N$ be non-singular matrices of order 3 satisfying the equations $L^2=L^{-1}, M=L^8$ and $N=L^2$. Which ONE of the following is the value of the determinant of $(M-N)$ ?
Let $P(x)$ be an arbitrary predicate over the domain of natural numbers. Which ONE of the following statements is TRUE?
Let $F$ be the set of all functions from $\{1, \ldots, n\}$ to $\{0,1\}$. Define the binary relation $\preccurlyeq$ on $F$ as follows:
$\forall f . g \in F, f \preccurlyeq g$ if and only if $\forall x \in\{1, \ldots, n\}, f(x) \leq g(x)$, where $0=1$.
Which of the following statement(s) is/are TRUE? re TRUE?
Consider a system of linear equations $P X=Q$ where $P \in \mathbb{R}^{3 \times 3}$ and $Q \in \mathbb{R}^{3 \times 3}$. Suppose $P$ has an $L U$ decomposition, $P=L U$, where
$$L=\left[\begin{array}{ccc} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{array}\right] \text { and } u=\left[\begin{array}{ccc} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{array}\right]$$
Which of the following statement(s) is/are TRUE?