1
GATE CSE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Consider the following processors ($$ns$$ stands for nanoseconds). Assume that the pipeline registers have zero latency.
$$P1:$$ Four-stage pipeline with stage latencies $$1$$ $$ns,$$ $$2$$ $$ns,$$ $$2$$ $$ns,$$ $$1$$ $$ns.$$
$$P2:$$ Four-stage pipeline with stage latencies $$1$$ $$ns,$$ 1$$.5$$ $$ns,$$ $$1.5$$ $$ns,$$ $$1.5$$ $$ns.$$
$$P3:$$ Five-stage pipeline with stage latencies $$0.5$$ $$ns,$$ $$1$$ $$ns,$$ $$1$$ $$ns,$$ $$0.6$$ $$ns,$$ $$1$$ $$ns.$$
$$P4:$$ Five-stage pipeline with stage latencies $$0.5$$ $$ns,$$ $$0.5$$ $$ns,$$ $$1$$ $$ns,$$ $$1$$ $$ns,$$ $$1.1$$ $$ns.$$

Which processor has the highest peak clock frequency?

A
$$P1$$
B
$$P2$$
C
$$P3$$
D
$$P4$$
2
GATE CSE 2014 Set 3
Numerical
+2
-0
An instruction pipeline has five stages, namely, instruction fetch $$(IF),$$ instruction decode and register fetch $$(ID/RF)$$ instruction execution $$(EX),$$ memory access $$(MEM),$$ and register writeback $$(WB)$$ with stage latencies $$1$$ ns, $$2.2$$ $$ns,$$ $$2$$ $$ns,$$ $$1$$ $$ns,$$ and $$0.75$$ $$ns,$$ respectively ($$ns$$ stands for nanoseconds). To gain in terms of frequency, the designers have decided to split the $$ID/RF$$ stage into three stages $$(ID, RF1, RF2)$$ each of latency $$2.2/3$$ $$ns,$$ Also, the $$EX$$ stage is split into two stages $$(EX1, EX2)$$ each of latency $$1$$ ns. The new design has a total of eight pipeline stages. A program has $$20$$% branch instructions which execute in the $$EX$$ stage and produce the next instruction pointer at the end of the $$EX$$ stage in the old design and at the end of the $$EX2$$ stage in the new design. The IF stage stalls after fetching a branch instruction until the next instruction pointer is computed. All instructions other than the branch instruction have an average $$CPI$$ of one in both the designs. The execution times of this program on the old and the new design are $$P$$ and $$Q$$ nanoseconds, respectively. The value of $$P/Q$$ is _____________.
Your input ____
3
GATE CSE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Consider the pseudocode given below. The function Dosomething () takes as argument a pointer to the root of an arbitrary tree represented by the leftMostChild-rightSibling representation. Each node of the tree is of type treeNode.
typedef struct treeNode* treeptr; 
Struct treeNode 
{ 
    Treeptr leftMostchild, rightSibiling; 
}; 
Int Dosomething (treeptr tree) 
{ 
    int value =0; 
    if (tree ! = NULL) { 
      If (tree -> leftMostchild = = NULL) 
          value=1; 
    else 
        value = Dosomething (tree->leftMostchild); 
        value = value + Dosometing (tree->rightsibiling); 
    } 
    return (value); 
}
When the pointer to the root of a tree is passed as the argument to DoSomething, the value returned by the function corresponds to the
A
number of internal nodes in the tree.
B
height of the tree
C
number of nodes without a right sibling in the tree.
D
number of leaf nodes in the tree.
4
GATE CSE 2014 Set 3
Numerical
+1
-0
Suppose depth first search is executed on the graph below starting at some unknown vertex. Assume that a recursive call to visit a vertex is made only after first checking that the vertex has not been visited earlier. Then the maximum possible recursion depth (including the initial call) is _________. GATE CSE 2014 Set 3 Data Structures - Graphs Question 24 English
Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12