1
GATE CSE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Let $$ < M > $$ be the encoding of a Turing machine as a string over $$\sum { = \left\{ {0,1} \right\}.} $$
Let $$L = \left\{ { < M > \left| M \right.} \right.$$ is a Turing machine that accepts a string of length $$\left. {2014} \right\}.$$ Then, $$L$$ is
A
decidable and recursively enumerable
B
un-decidable but recursively enumerable
C
un-decidable and not recursively enumerable
D
decidable but not recursively enumerable
2
GATE CSE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Let $${L_1} = \left\{ {w \in \left\{ {0,1} \right\}{}^ * \left| w \right.} \right.$$ has at least as many occurrences of $$(110)'s$$ as $$(011)'s$$$$\left. \, \right\}$$. Let $${L_2} = \left\{ {w \in \left\{ {0,\,\,1} \right\}{}^ * \left| w \right.} \right.$$ has at least as many occurrences of $$(000)'s$$ as $$(111)'s$$$$\left. \, \right\}$$. Which one of the following is TRUE?
A
$${L_1}$$ is regular but not $${L_2}$$
B
$${L_2}$$ is regular but not $${L_1}$$
C
Both $${L_1}$$ and $${L_2}$$ are regular
D
Neither $${L_1}$$ nor $${L_2}$$ are regular
3
GATE CSE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
If $${L_1} = \left\{ {{a^n}\left| {n \ge \left. 0 \right\}} \right.} \right.$$ and $${L_2} = \left\{ {{b^n}\left| {n \ge \left. 0 \right\}} \right.} \right.,$$ consider
$$\left. {\rm I} \right)$$ $$\,\,\,{L_{1 \bullet }}{L_2}$$ is a regular language
$$\left. {\rm II} \right)$$ $$\,\,\,{L_{1 \bullet }}{L_2} = \left\{ {{a^n}{b^n}\left| {n \ge \left. 0 \right\}} \right.} \right.$$
Which one of the following is CORRECT?
A
Only $$\left( {\rm I} \right)$$
B
Only $$\left( {\rm II} \right)$$
C
Both $$\left( {\rm I} \right)$$ and $$\left( {\rm II} \right)$$
D
Neither $$\left( {\rm I} \right)$$ nor $$\left( {\rm II} \right)$$
4
GATE CSE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Let $${L_1} = \left\{ {w \in \left\{ {0,1} \right\}{}^ * \left| w \right.} \right.$$ has at least as many occurrences of $$(110)'s$$ as $$(011)'s$$$$\left. \, \right\}$$. Let $${L_2} = \left\{ {w \in \left\{ {0,\,\,1} \right\}{}^ * \left| w \right.} \right.$$ has at least as many occurrences of $$(000)'s$$ as $$(111)'s$$$$\left. \, \right\}$$. Which one of the following is TRUE?
A
$${L_1}$$ is regular but not $${L_2}$$
B
$${L_2}$$ is regular but not $${L_1}$$
C
Both $${L_1}$$ and $${L_2}$$ are regular
D
Neither $${L_1}$$ nor $${L_2}$$ are regular
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12