Let $$\rho$$ be a relation defined on set of natural numbers N, as $$\rho = \{ (x,y) \in N \times N:2x + y = 4\} $$. Then domain A and range B are
From the focus of the parabola $${y^2} = 12x$$, a ray of light is directed in a direction making an angle $${\tan ^{ - 1}}{3 \over 4}$$ with x-axis. Then the equation of the line along which the reflected ray leaves the parabola is
The locus of points (x, y) in the plane satisfying $${\sin ^2}x + {\sin ^2}y = 1$$ consists of
The value of $$\mathop {\lim }\limits_{n \to \infty } \left[ {\left( {{1 \over {2\,.\,3}} + {1 \over {{2^2}\,.\,3}}} \right) + \left( {{1 \over {{2^2}\,.\,{3^2}}} + {1 \over {{2^3}\,.\,{3^2}}}} \right)\, + \,...\, + \,\left( {{2 \over {{2^n}\,.\,{3^n}}} + {1 \over {{2^{n + 1}}\,.\,3n}}} \right)} \right]$$ is