1
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $${I_n} = \int\limits_0^{{\pi \over 2}} {{{\cos }^n}x\cos nxdx} $$, then I$$_1$$, I$$_2$$, I$$_3$$ ... are in

A
A.P.
B
G.P.
C
H.P.
D
no such relation
2
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$y = {x \over {{{\log }_e}|cx|}}$$ is the solution of the differential equation $${{dy} \over {dx}} = {y \over x} + \phi \left( {{x \over y}} \right)$$, then $$\phi \left( {{x \over y}} \right)$$ is given by

A
$${{{y^2}} \over {{x^2}}}$$
B
$$ - {{{y^2}} \over {{x^2}}}$$
C
$${{{x^2}} \over {{y^2}}}$$
D
$$ - {{{x^2}} \over {{y^2}}}$$
3
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

The function $$y = {e^{kx}}$$ satisfies $$\left( {{{{d^2}y} \over {d{x^2}}} + {{dy} \over {dx}}} \right)\left( {{{dy} \over {dx}} - y} \right) = y{{dy} \over {dx}}$$. It is valid for

A
exactly one value of k.
B
two distinct values of k.
C
three distinct values of k.
D
infinitely many values of k.
4
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Given $${{{d^2}y} \over {d{x^2}}} + \cot x{{dy} \over {dx}} + 4y\cos e{c^2}x = 0$$. Changing the independent variable x to z by the substitution $$z = \log \tan {x \over 2}$$, the equation is changed to

A
$${{{d^2}y} \over {d{z^2}}} + {3 \over y} = 0$$
B
$$2{{{d^2}y} \over {d{z^2}}} + {e^y} = 0$$
C
$${{{d^2}y} \over {d{z^2}}} - 4y = 0$$
D
$${{{d^2}y} \over {d{z^2}}} + 4y = 0$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12