If the matrix Mr is given by $${M_r} = \left( {\matrix{ r & {r - 1} \cr {r - 1} & r \cr } } \right)$$ for r = 1, 2, 3, ... then det (M1) + det (M2) + ... + det (M2008) =
Let $$\alpha,\beta$$ be the roots of the equation $$a{x^2} + bx + c = 0,a,b,c$$ real and $${s_n} = {\alpha ^n} + {\beta ^n}$$ and $$\left| {\matrix{ 3 & {1 + {s_1}} & {1 + {s_2}} \cr {1 + {s_1}} & {1 + {s_2}} & {1 + {s_3}} \cr {1 + {s_2}} & {1 + {s_3}} & {1 + {s_4}} \cr } } \right| = k{{{{(a + b + c)}^2}} \over {{a^4}}}$$ then $$k = $$
Let A, B, C are subsets of set X. Then consider the validity of the following set theoretic statement:
Let X be a nonvoid set. If $$\rho_1$$ and $$\rho_2$$ be the transitive relations on X, then
($$\circ$$ denotes the composition of relations)