1
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $${\cos ^{ - 1}}\left( {{y \over b}} \right) = {\log _e}{\left( {{x \over n}} \right)^n}$$, then $$A{y_2} + B{y_1} + Cy = 0$$ is possible for, where $${y_2} = {{{d^2}y} \over {d{x^2}}},{y_1} = {{dy} \over {dx}}$$

A
$$A = 2,B = {x^2},C = n$$
B
$$A = {x^2},B = x,C = {n^2}$$
C
$$A = x,B = 2x,C = 3n + 1$$
D
$$A = {x^2},B = 3x,C = 2n$$
2
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$I = \int {{{{x^2}dx} \over {{{(x\sin x + \cos x)}^2}}} = f(x) + \tan x + c} $$, then $$f(x)$$ is

A
$${{\sin x} \over {x\sin x + \cos x}}$$
B
$${1 \over {{{(x\sin x + \cos x)}^2}}}$$
C
$${{ - x} \over {\cos x(x\sin x + \cos x)}}$$
D
$${1 \over {\sin x(x\cos x + \sin x)}}$$
3
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$\int {{{dx} \over {(x + 1)(x - 2)(x - 3)}} = {1 \over k}{{\log }_e}\left\{ {{{|x - 3{|^3}|x + 1|} \over {{{(x - 2)}^4}}}} \right\} + c} $$, then the value of k is

A
4
B
6
C
8
D
12
4
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

the expression $${{\int\limits_0^n {[x]dx} } \over {\int\limits_0^n {\{ x\} dx} }}$$, where $$[x]$$ and $$\{ x\} $$ are respectively integral and fractional part of $$x$$ and $$n \in N$$, is equal to

A
$${1 \over {n - 1}}$$
B
$${1 \over n}$$
C
$$n$$
D
$$n-1$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12