In the interval $$( - 2\pi ,0)$$, the function $$f(x) = \sin \left( {{1 \over {{x^3}}}} \right)$$.
The average ordinate of $$y = \sin x$$ over $$[0,\pi ]$$ is :
The portion of the tangent to the curve $${x^{{2 \over 3}}} + {y^{{2 \over 3}}} = {a^{{2 \over 3}}},a > 0$$ at any point of it, intercepted between the axes
If the volume of the parallelopiped with $$\overrightarrow a \times \overrightarrow b ,\overrightarrow b \times \overrightarrow c $$ and $$\overrightarrow c \times \overrightarrow a $$ as conterminous edges is 9 cu. units, then the volume of the parallelopiped with $$(\overrightarrow a \times \overrightarrow b ) \times (\overrightarrow b \times \overrightarrow c ),(\overrightarrow b \times \overrightarrow c ) \times (\overrightarrow c \times \overrightarrow a )$$, and $$(\overrightarrow c \times \overrightarrow a ) \times (\overrightarrow a \times \overrightarrow b )$$ as conterminous edges is