If $A=\left[\begin{array}{lll}x & y & y \\ y & x & y \\ y & y & x\end{array}\right]$ is a matrix such that $5 A^{-1}=\left[\begin{array}{ccc}-3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3\end{array}\right]$, then $A^2-4 A=$
If $A=\left[\begin{array}{lll}9 & 3 & 0 \\ 1 & 5 & 8 \\ 7 & 6 & 2\end{array}\right]$ and $A A^T-A^2=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then $\sum\limits_{\substack{1 \leq i \leq 3 \\ 1 \leq j \leq 3}} a_{i j}=$
If $a \neq b \neq c, \Delta_1=\left[\begin{array}{lll}1 & a^2 & b c \\ 1 & b^2 & c a \\ 1 & c^2 & a b\end{array}\right]$, $\Delta_2=\left[\begin{array}{ccc}1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3\end{array}\right]$ and $\frac{\Delta_1}{\Delta_2}=\frac{6}{11}$, then $11(a+b+c)=$