1
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $y=\cos ^{-1}\left(\frac{6 x-2 x^2-4}{2 x^2-6 x+5}\right)$, then $\frac{d y}{d x}=$
A
$\frac{2}{\sqrt{3 x-x^2-2}}$
B
$\frac{2}{3 x-x^2-2}$
C
$\frac{2}{\sqrt{2 x^2-6 x+5}}$
D
$\frac{2}{2 x^2-6 x+5}$
2
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\log y=y^{\log x}$, then $\frac{d y}{d x}=$
A
$\frac{y(\log y)^2}{x(1-\log x \log y)}$
B
$\frac{x(\log x)^2}{y(1-\log x \log y)}$
C
$\frac{x(1-\log x \log y)}{y(\log y)^2}$
D
$\frac{y(1-\log x \log y)}{x(\log x)^2}$
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $y=a \cos 3 x+b e^{-x}$, then $y^{\prime \prime}(3 \sin 3 x-\cos 3 x)=$
A
$10 y^{\prime} \sin 3 x+3 y(\sin 3 x+3 \cos 3 x)$
B
$10 y^{\prime} \cos 3 x+3 y(\sin 3 x+3 \cos 3 x)$
C
$10 y \cos 3 x+3 y(\cos 3 x+3 \sin 3 x)$
D
$10 y^{\prime} \cos 3 x+3 y(\sin 3 x-3 \cos 3 x)$
4
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The approximate value of $\sec 59^{\circ}$ obtained by taking $1^{\circ}$ $=0.0174$ and $\sqrt{3}=1.732$ is
A
1.9849
B
1.8493
C
1.9397
D
1.9948
EXAM MAP